Learn More
The Grx (glutaredoxin) proteins are oxidoreductases with a central function in maintaining the redox balance within the cell. In the present study, we have explored the reactions between selenium compounds and the glutaredoxin system. Selenite, GS-Se-SG (selenodiglutathione) and selenocystine were all shown to be substrates of human Grx1, implying a novel(More)
The selenium salt selenite (SeO(3)(2-)) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite cytotoxicity observed in resistant cancer cells. We show(More)
BACKGROUND Selenite is a promising anticancer agent which has been shown to induce apoptosis in malignant mesothelioma cells in a phenotype-dependent manner, where cells of the chemoresistant sarcomatoid phenotype are more sensitive. METHODS In this paper, we investigate the apoptosis signalling mechanisms in sarcomatoid and epithelioid mesothelioma cells(More)
Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established(More)
Selenite is a potent inhibitor of malignant cell growth. Although the cytotoxic effects have been extensively investigated in vitro, there are only a limited number of studies using primary tumor cells with concomitant comparison to conventional drugs. An ex vivo model with primary cells from 39 consecutive patients with acute myeloid leukemia (AML) were(More)
  • 1