Eric M. Winder

Learn More
The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and(More)
Nanoscale sensing arrays utilizing the unique properties of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots are being developed for toxin detection applications. This paper describes an innovative method to activate bacteriorhodopsin-based electrodes with the optical output of quantum dots, producing an enhanced electrical(More)
Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers(More)
The unique energy transfer interaction between the optical Utilizing the direct energy transfer mechanism existing between semiconductor quantum dots and the hydrogen ion protein pump bacteriorhodopsin, a multi-functional bioelectronics platform is demonstrated. Fluorescence resonance energy transfer coupled QD-bR systems have been proven in both aqueous(More)
An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements(More)
This paper describes how monomeric bR can be overproduced in Escherichia coli and subsequently utilized as an integral component of a generic, nanoscale chemical sensing platform. The utility of this sensing platform is that it can be adapted for detection of a wide range of biological and chemical agents at, or below, nanomolar concentration levels. The(More)
  • 1