Eric M. Shepard

Learn More
Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical AdoMet enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as a substrate. CO production was detected by using(More)
The organometallic H cluster at the active site of [FeFe]-hydrogenase consists of a 2Fe subcluster coordinated by cyanide, carbon monoxide, and a nonprotein dithiolate bridged to a [4Fe-4S] cluster via a cysteinate ligand. Biosynthesis of this cluster requires three accessory proteins, two of which (HydE and HydG) are radical S-adenosylmethionine enzymes.(More)
Humans have three functioning genes that encode copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a(More)
Pichia pastoris lysyl oxidase (PPLO) is unique among the structurally characterized copper amine oxidases in being able to oxidize the side chain of lysine residues in polypeptides. Remarkably, the yeast PPLO is nearly as effective in oxidizing a mammalian tropoelastin substrate as is a true mammalian lysyl oxidase isolated from bovine aorta. Thus, PPLO is(More)
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely(More)
In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all(More)
ing a H-atom from substrate. These and other kinetics studies demonstrated that PFL-AE could undergo multiple turnover events, with the 150 PFL activations per PFL-AE reported in Table 1 not the upper limit, but rather a number limited by the PFL:PFL-AE ratio in the steady-state kinetics assays. As can be seen from the data summarized in Table 1, PFL-AE is(More)
Bacterial spores are remarkable in their resistance to chemical and physical stresses, including exposure to UV radiation. The unusual UV resistance of bacterial spores is a result of the unique photochemistry of spore DNA, which results in accumulation of 5-thyminyl-5,6-dihydrothymine (spore photoproduct, or SP), coupled with the efficient repair of(More)
The genetic context, phylogeny, and biochemistry of a gene flanking the H(2)-forming methylene-H(4)-methanopterin dehydrogenase gene (hmdA), here designated hmdB, indicate that it is a new member of the radical S-adenosylmethionine enzyme superfamily. In contrast to the characteristic CX(3)CX(2)C or CX(2)CX(4)C motif defining this family, HmdB contains a(More)