Learn More
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely(More)
Humans have three functioning genes that encode copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a(More)
Pichia pastoris lysyl oxidase (PPLO) is unique among the structurally characterized copper amine oxidases in being able to oxidize the side chain of lysine residues in polypeptides. Remarkably, the yeast PPLO is nearly as effective in oxidizing a mammalian tropoelastin substrate as is a true mammalian lysyl oxidase isolated from bovine aorta. Thus, PPLO is(More)
Bacterial spores are remarkable in their resistance to chemical and physical stresses, including exposure to UV radiation. The unusual UV resistance of bacterial spores is a result of the unique photochemistry of spore DNA, which results in accumulation of 5-thyminyl-5,6-dihydrothymine (spore photoproduct, or SP), coupled with the efficient repair of(More)
In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all(More)
Potential dioxygen-binding sites in three Cu amine oxidases have been investigated by recording X-ray diffraction data at 1.7-2.2A resolution for crystals under a high pressure of xenon gas. Electron-density difference maps and crystallographic refinement provide unequivocal evidence for a number of Xe-binding sites in each enzyme. Only one of these sites(More)
Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly(More)
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea(More)
The role of copper during the reoxidation of substrate-reduced amine oxidases by O(2) has not yet been definitively established. Both outer-sphere and inner-sphere pathways for the reduction of O(2) to H(2)O(2) have been proposed. A key step in the inner-sphere mechanism is the reaction of O(2) directly with the Cu(I) center of a Cu(I)-semiquinone(More)