Learn More
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA(More)
Long interspersed nuclear elements (LINEs or L1s) comprise approximately 17% of human DNA; however, only about 60 of the approximately 400,000 L1s are mobile. Using a retrotransposition assay in cultured human cells, we demonstrate that L1-encoded proteins predominantly mobilize the RNA that encodes them. At much lower levels, L1-encoded proteins can act in(More)
Active LINE-1 (L1) elements possess the ability to transduce non-L1 DNA flanking their 3' ends to new genomic locations. Occasionally, the 3' end processing machinery may bypass the L1 polyadenylation signal and instead utilize a second downstream polyadenylation site. To determine the frequency of L1-mediated transduction in the human genome, we selected(More)
L1 elements are the only active autonomous retrotransposons in the human genome. The nonautonomous Alu elements, as well as processed pseudogenes, are retrotransposed by the L1 retrotransposition proteins working in trans. Here, we describe another repetitive sequence in the human genome, the SVA element. Our analysis reveals that SVA elements are currently(More)
Retrotransposition of LINEs and other retroelements increases repetition in mammalian genomes and can cause deleterious mutations. Recent insertions of two full-length L1s, L1spa and L1Orl, caused the disease phenotypes of the spastic and Orleans reeler mice respectively. Here we show that these two recently retrotransposed L1s are nearly identical in(More)
Long Interspersed Element 1 (L1) is a retrotransposon that comprises approximately 17% of the human genome. Despite its abundance in mammalian genomes, relatively little is understood about L1 retrotransposition in vivo. To study the timing and tissue specificity of retrotransposition, we created transgenic mouse and rat models containing human or mouse L1(More)
To study integration of the human LINE-1 retrotransposon (L1) in vivo, we developed a transgenic mouse model of L1 retrotransposition that displays de novo somatic L1 insertions at a high frequency, occasionally several insertions per mouse. We mapped 3' integration sites of 51 insertions by Thermal Asymmetric Interlaced PCR (TAIL-PCR). Analysis of(More)
Unlike human L1 retrotransposons, the 5' UTR of mouse L1 elements contains tandem repeats of approximately 200 bp in length called monomers. Multiple L1 subfamilies exist in the mouse which are distinguished by their monomer sequences. We previously described a young subfamily, called the T(F) subfamily, which contains approximately 1800 active elements(More)
L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase ( neo ) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses(More)
Determining the subcellular localization of the L1 ORF2 protein (ORF2p) has been impossible to date because of technical limitations in detecting either endogenous or overexpressed forms of the protein. Here we report visualization of the full-length ORF2p in cultured human cells following expression in a modified vaccinia virus/T7 RNA polymerase (MVA/T7RP)(More)