Learn More
Determining the subcellular localization of the L1 ORF2 protein (ORF2p) has been impossible to date because of technical limitations in detecting either endogenous or overexpressed forms of the protein. Here we report visualization of the full-length ORF2p in cultured human cells following expression in a modified vaccinia virus/T7 RNA polymerase (MVA/T7RP)(More)
TMEM16C belongs to the TMEM16 family, which includes the Ca(2+)-activated Cl(-) channels TMEM16A and TMEM16B and a small-conductance, Ca(2+)-activated, nonselective cation channel (SCAN), TMEM16F. We found that in rat dorsal root ganglia (DRG) TMEM16C was expressed mainly in the IB4-positive, non-peptidergic nociceptors that also express the(More)
Long interspersed nuclear elements (LINEs or L1s) comprise approximately 17% of human DNA; however, only about 60 of the approximately 400,000 L1s are mobile. Using a retrotransposition assay in cultured human cells, we demonstrate that L1-encoded proteins predominantly mobilize the RNA that encodes them. At much lower levels, L1-encoded proteins can act in(More)
L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase ( neo ) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses(More)
LINE1 (L1) retrotransposons are genetic elements that are present in all mammalian genomes. L1s are active in both humans and mice, and are capable of copying themselves and inserting the copy into a new genomic location. These de novo insertions occasionally result in disease. Endogenous L1 retrotransposons can be modified to increase their activity and(More)
Acute and chronic pain resulting from injury, surgery, or disease afflicts >100 million Americans each year, having a severe impact on mood, mental health, and quality of life. The lack of structural and functional information for most ion channels, many of which play key roles in the detection and transmission of noxious stimuli, means that there remain(More)
Shyness and social anxiety are predominant features of some psychiatric disorders including autism, schizophrenia, anxiety and depression. Understanding the cellular and molecular determinants of sociability may reveal therapeutic approaches to treat individuals with these disorders and improve their quality of life. Previous experiments from our laboratory(More)
The nonselective cation channel TRPC4 has been shown to be present in high abundance in the corticolimbic regions of the brain and play a pivotal role in modulating cellular excitability due to their involvement in intracellular Ca 2+ regulation. Recently we reported their involvement in socialization and regulating anxiety-­ like behaviors in rats. Given(More)
e TRPC4 channel is a nonselective cation channel that is widely expressed in lateral septum, hippocampus and pre-frontal cortex (PFC). ese areas receive extensive input from dopamine (DA) neurons originating in the ventral teg-mental area (VTA) 1. ese DA neurons are involved in the modulation of reward systems and stress. We have reported the TRPC4 protein(More)
To develop a technique that maximizes the encapsulation of functional proteins within neutrally charged, fully PEGylated and nanoscale polymer vesicles (i.e., polymersomes). Three conventional vesicle formation methods were utilized for encapsulation of myoglobin (Mb) in polymersomes of varying size, PEG length, and membrane thickness. Mb concentrations(More)