Eric Lesniewska

Learn More
The membrane surface of living CV-1 kidney cells in culture was imaged by contact-mode atomic force microscopy using scanning forces in the piconewton range. A simple procedure was developed for imaging of the cell surface with forces as low as 20-50 pN, i.e., two orders of magnitude below those commonly used for cell imaging. Under these conditions, the(More)
Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall(More)
The membrane surface of polarized renal epithelial cells (MDCK cells) grown as a monolayer was imaged with the atomic force microscope. The surface topography of dried cells determined by this approach was consistent with electron microscopy images previously reported. Fixed and living cells in aqueous medium gave more fuzzy images, likely because of the(More)
In this brief review, we present three-dimensional images of living Madin-Darby canine kidney (MDCK) cells and CV-1 cells that illustrate the possibilities and limits in the use of atomic force microscopy (AFM) for studying the topography of the cell surfaces and of isolated biological membranes. We show that microvilli can be imaged at the surface of(More)
PURPOSE To evaluate the feasibility of imaging normal corneal epithelium by means of atomic force microscopy (AFM). METHODS Twelve normal corneas from six albino rabbits were examined using a commercial atomic force microscope. Six corneas were examined in balanced salt solution after fixation in glutaraldehyde 2.5% and six without any fixation.(More)
Comb copolymers with an adsorbing backbone and nonadsorbing side chains can be very effective dispersants, particularly when a high ionic strength strongly penalizes electrostatic stabilization. For this reason, they have become essential components of concrete over the past decade. This article examines the steric hindrance characteristics of such polymers(More)
In cement paste, the cohesion results of the interactions between calcium silicate hydrate (CSH) surfaces in an interstitial ionic solution. (N, V, T) Monte Carlo simulations show that the interactions are due to the ion correlation forces influenced by the surface charge density, the ionic concentration and the ion valence. This paper deals with the direct(More)
To better understand the nature of the mechanism involved in the membrane uptake of a vector peptide, the interactions between dioleoylphosphatidylcholine and a primary amphipathic peptide containing a signal peptide associated with a nuclear localization sequence have been studied by isotherms analysis of mixed monolayers spread at the air-water interface.(More)
This work is the first step towards the understanding of the structure of calcium silicate hydrate (C-S-H), the main constituent of cement paste, at the nanoscale. The first demonstration of atomic-resolution imaging of the (C-S-H) surface with an atomic force microscope (AFM) was performed. C-S-H nanoparticles (60 x 30 x 5 nm3) were partially(More)
The cytoplasmic face of ventral cell membranes of Madin-Darby canine kidney (MDCK) cells grown on glass coverslips was imaged by atomic force microscopy (AFM) in air and under aqueous medium, in "contact" mode. Micrometer range scans on air-dried samples revealed a heterogeneous structure with some filaments, likely corresponding to actin filaments that(More)