Eric L. First

Learn More
Reaction mappings are of fundamental importance to researchers studying the mechanisms of chemical reactions and analyzing biochemical pathways. We have developed an automated method based on integer linear optimization, ILP, to identify optimal reaction mappings that minimize the number of bond changes. An alternate objective function is also proposed that(More)
An automated method has been developed to fully characterize the three-dimensional structure of zeolite porous networks. The proposed optimization-based approach starts with the crystallographic coordinates of a structure and identifies all portals, channels, and cages in a unit cell, as well as their connectivity. We apply our algorithms to known zeolites,(More)
With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by(More)
The complex nature of the porous networks in microporous materials is primarily responsible for a high degree of intracrystalline diffusion anisotropy. Although this is a well-understood phenomenon, little attention has been paid in the literature with regards to classifying such anisotropy and elucidating its effect on the performance of membrane-based(More)
A hierarchical computational approach is introduced that combines materials screening with process optimization. This approach leads to novel materials for cost-effective CO2 capture. Zeolites are screened using shape, size, and adsorption selectivities. Next, process optimization is introduced to generate a rank-ordered list based on total cost of capture(More)
  • 1