Learn More
There is a widespread need for statistical methods that can analyze high-dimensional datasets without imposing restrictive or opaque modeling assumptions. This paper describes a domain-general data analysis method called CrossCat. CrossCat infers multiple non-overlapping views of the data, each consisting of a subset of the variables, and uses a separate(More)
A variety of applications employ ensemble learning models, using a collection of decision trees, to quickly and accurately classify an input based on its vector of features. In this paper, we discuss the implementation of such a method, namely Random Forests, as the first machine learning algorithm to be executed on the Automata Processor (AP). The AP is an(More)
We introduce adaptive sequential rejection sampling, an algorithm for generating exact samples from high-dimensional, discrete distributions, building on ideas from classical AI search. Just as systematic search algorithms like A* recursively build complete solutions from partial solutions, sequential rejection sampling recursively builds exact samples over(More)
There is a popular belief in neuroscience that we are primarily data limited, and that producing large, multimodal, and complex datasets will, with the help of advanced data analysis algorithms, lead to fundamental insights into the way the brain processes information. These datasets do not yet exist, and if they did we would have no way of evaluating(More)
We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogenous volumetric scattering, then develop a reconstruction(More)
We introduce combinational stochastic logic, an abstraction that generalizes deterministic digital circuit design (based on Boolean logic gates) to the probabilistic setting. We show how this logic can be combined with techniques from contemporary digital design to generate stateless and stateful circuits for exact and approximate sampling from a range of(More)
Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that(More)
Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple(More)
We describe an adaptation of the simulated annealing algorithm to nonparametric clustering and related probabilistic models. This new algorithm learns nonparametric latent structure over a growing and constantly churning subsample of training data, where the portion of data subsampled can be interpreted as the inverse temperature β(t) in an annealing(More)
Model-based clustering techniques, including inference in Dirichlet process mixture models, have difficulty when different dimensions are best explained by very different clusterings. We introduce cross-categorization, an unsupervised learning technique that overcomes this basic limitation. Based on MCMC inference in a novel nonparametric Bayesian model,(More)