Eric J. Stevenson

Learn More
Muscular inactivity leads to atrophy, weakness, and decreased fatigue resistance. In order to provide a window into the dynamic processes that underlie muscle atrophy, we performed global gene expression analysis of rat soleus muscles using Affymetrix GeneChips at 1, 4, 7 and 14 days of hindlimb unloading. Expression of 309 known genes was significantly(More)
Investigating the molecular mechanisms underlying sarcopenia in humans with the use of microarrays has been complicated by low sample size and the variability inherent in human gene expression profiles. We have conducted a study using Affymetrix GeneChips to identify a molecular signature of aged skeletal muscle. The molecular signature was defined as the(More)
This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are(More)
Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid(More)
Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid(More)
  • 1