Eric J. Gangloff

Learn More
Interactions at all levels of ecology are influenced by the rate at which energy is obtained, converted, and allocated. Trade-offs in energy allocation within individuals in turn form the basis for life-history theory. Here we describe tests of the influences of temperature, developmental environment, and genetic background on measures of growth efficiency(More)
Extreme temperatures constrain organismal physiology and impose both acute and chronic effects. Additionally, temperature-induced hormone-mediated stress response pathways and energetic tradeoffs are important drivers of life-history variation. This study employs an integrative approach to quantify acute physiological responses to high temperatures in(More)
Characterizing the baseline and stress-induced hormonal, metabolite, and immune profiles of wild animals is important to assess the impacts of variable environments, including human-induced landscape changes, on organismal health. Additionally, the extent to which these profiles are coordinated across physiological systems within individuals remains an(More)
Hidden Markov models (HMMs) are commonly used to model animal movement data and infer aspects of animal behavior. An HMM assumes that each data point from a time series of observations stems from one of N possible states. The states are loosely connected to behavioral modes that manifest themselves at the temporal resolution at which observations are made.(More)
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos(More)
SYNOPSIS The morphology-performance-fitness paradigm for testing selection on morphological traits has seen decades of successful application. At the same time, life-history approaches using matrix methods and perturbation studies have also allowed the direct estimate of selection acting on vital rates and the traits that comprise them. Both methodologies(More)
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To(More)
An animal's life history, physiology, and behaviour can be shaped by selection in a manner that favours strong associations among these aspects of an integrated phenotype. Recent work combining animal personality and life-history theory proposes that animals with faster life-history strategies (i.e., fast growth, high annual reproductive rate, short(More)
The mechanisms that mediate the interaction between the thermal environment and species ranges are generally uncertain. Thermal environments may directly restrict species when environments exceed tolerance limits (i.e. the fundamental niche). However, thermal environments might also differentially affect relative performance among species prior to(More)
Low-oxygen conditions (hypoxia; <21% O2 ) are considered unfavorable for growth; yet, embryos of many vertebrate taxa develop successfully in hypoxic subterranean environments. Although enhanced tolerance to hypoxia has been demonstrated in adult reptiles, such as in the painted turtle (Chrysemys picta), its effects on sensitive embryo life stages warrant(More)
  • 1