Learn More
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding(More)
Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation ("snowball Earth" conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global(More)
We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a(More)
The environmental conditions in permeable carbonate sands are in many ways different from those in fine-grained sediments, but little is known about how this affects the structure and composition of the microbial community. We studied the microbial community structure in relation to the geochemical zonation within a 4 m2 patch of a sandy carbonate sediment(More)
We report the results of deep observations at radio (3.6 cm) wavelengths of the nearby solar-type star pi 01 Ursa Majoris with the Very Large Array (VLA) intended to test an alternative theory of solar luminosity evolution. The standard model predicts a solar luminosity only 75% of the present value and surface temperatures below freezing on Earth and Mars(More)
Ribosomal tag libraries based on DNA and RNA in coral reef sediment from Hawaii show the microbial community to be dominated by the bacterial phyla Proteobacteria, Firmicutes and Actinobacteria, the archaeal order Nitrosopumilales and the uncultivated divisions Marine Group III (Euryarchaeota) and Marine Benthic Group C (Crenarchaeota). Operational(More)