Learn More
BACKGROUND Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the(More)
BACKGROUND Triticum monococcum (2n = 2x = 14) is an ancient diploid wheat with many useful traits and is used as a model for wheat gene discovery. DArT (Diversity Arrays Technology) employs a hybridisation-based approach to type thousands of genomic loci in parallel. DArT markers were developed for T. monococcum to assess genetic diversity, compare(More)
BACKGROUND The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In(More)
The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does(More)
BACKGROUND The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to(More)
BACKGROUND Bulked segregant analysis (BSA) identifies molecular markers associated with a phenotype by screening two DNA pools of phenotypically distinct plants for markers with skewed allele frequencies. In contrast to gel-based markers, hybridization-based markers such as SFP, DArT or SNP generate quantitative allele-frequency estimates. Only DArT,(More)
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing(More)
Analysis of the extent of genetic variation within genetic resources is important for diversity preservation and also for breeders who exploit it. We investigated the recently introduced molecular marker technique of DNA diversity array technology (DArT), with the objective of characterising diversity in the likely relatively narrow genetic background of(More)
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for(More)
  • 1