Learn More
Volatile anesthetics produce safe, reversible unconsciousness, amnesia and analgesia via hyperpolarization of mammalian neurons. In molluscan pacemaker neurons, they activate an inhibitory synaptic K+ current (IKAn), proposed to be important in general anesthesia. Here we show that TASK and TREK-1, two recently cloned mammalian two-P-domain K+ channels(More)
Aplysia S-type K+ channels of sensory neurons play a dominant role in presynaptic facilitation and behavioural sensitization. They are closed by serotonin via cAMP-dependent phosphorylation, whereas they are opened by arachidonic acid, volatile general anaesthetics and mechanical stimulation. We have identified a cloned mammalian two P domain K+ channel(More)
Mammalian 2P domain K(+) channels are responsible for background or 'leak' K(+) currents. These channels are regulated by various physical and chemical stimuli, including membrane stretch, temperature, acidosis, lipids and inhalational anaesthetics. Furthermore, channel activity is tightly controlled by membrane receptor stimulation and second messenger(More)
Peripheral and central thermoreceptors are involved in sensing ambient and body temperature, respectively. Specialized cold and warm receptors are present in dorsal root ganglion sensory fibres as well as in the anterior/preoptic hypothalamus. The two-pore domain mechano-gated K(+) channel TREK-1 is highly expressed within these areas. Moreover, TREK-1 is(More)
TASK-1 encodes an acid- and anaesthetic-sensitive background K(+) current, which sets the resting membrane potential of both cerebellar granule neurons and somatic motoneurons. We demonstrate that TASK-1, unlike the other two pore (2P) domain K(+) channels, is directly blocked by submicromolar concentrations of the endocannabinoid anandamide, independently(More)
Free radical-induced oxidant stress has been implicated in a number of physiological and pathophysiological states including ischemia and reperfusion-induced dysrhythmia in the heart, apoptosis of T lymphocytes, phagocytosis, and neurodegeneration. We have studied the effects of oxidant stress on the native K+ channel from T lymphocytes and on K+ channels(More)
Two-pore-domain K+ (K(2P)) channels are a diverse and highly regulated superfamily of channels that are thought to provide baseline regulation of membrane excitability. Of these, the TREK channels are expressed highly in the human CNS, and can be activated by temperature, membrane stretch and internal acidosis. In addition, TREK channels are sensitively(More)
This article addresses whether TRPC1 or TRPC6 is an essential component of a mammalian stretch-activated mechano-sensitive Ca(2+) permeable cation channel (MscCa). We have transiently expressed TRPC1 and TRPC6 in African green monkey kidney (COS) or Chinese hamster ovary (CHO) cells and monitored the activity of the stretch-activated channels using a fast(More)
The two-pore (2P) domain K(+) channels TREK-1 and TRAAK are opened by membrane stretch as well as arachidonic acid (AA) (Patel, A. J., Honoré, E., Maingret, F., Lesage, F., Fink, M., Duprat, F., and Lazdunski, M. (1998) EMBO J. 17, 4283-4290; Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., and Honoré, E. (1999) J. Biol. Chem. 274, 26691-26696;(More)
The novel structural class of mammalian channels with four transmembrane segments and two pore regions comprise background K+ channels (TWIK-1, TREK-1, TRAAK, TASK, and TASK-2) with unique physiological functions (1-6). Unlike its counterparts, TRAAK is only expressed in neuronal tissues, including brain, spinal cord, and retina (1). This report shows that(More)