Eric H. Davidson

Learn More
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509(More)
Development of the animal body plan is controlled by large gene regulatory networks (GRNs), and hence evolution of body plans must depend upon change in the architecture of developmental GRNs. However, these networks are composed of diverse components that evolve at different rates and in different ways. Because of the hierarchical organization of(More)
Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory(More)
The genomic regulatory network that controls gene expression ultimately determines form and function in each species. The operational nature of the regulatory programming specified in cis-regulatory DNA sequence was determined from a detailed functional analysis of a sea urchin control element that directs the expression of a gene in the endoderm during(More)
Explanation of a process of development must ultimately be couched in the terms of the genomic regulatory code. Specification of an embryonic cell lineage is driven by a network of interactions among genes encoding transcription factors. Here, we present the gene regulatory network (GRN) that directs the specification of the skeletogenic micromere lineage(More)
The endo16 gene of Strongylocentrotus purpuratus encodes a secreted protein of the embryonic and larval midgut. The overall functional organization of the spatial and temporal control system of this gene are relatively well known from a series of earlier cis-regulatory studies. Our recent computational model for the logic operations of the proximal region(More)
Vegetal plate specification was assessed in S. purpuratus embryos after micromere deletions at the 4th, 5th and 6th cleavages, by assaying expression of the early vegetal plate marker Endo 16, using whole-mount in situ hybridization. After 4th cleavage micromere deletions, the embryos typically displayed weak Endo16 expression in relatively few cells of the(More)
The gene regulatory apparatus that directs development is encoded in the DNA, in the form of organized arrays of transcription factor target sites. Genes are regulated by interactions with multiple transcription factors and the target sites for the transcription factors required for the control of each gene constitute its cis-regulatory system. These(More)
Three aspects of early sea urchin development are reviewed, and conclusions derived that lead to a unified concept of how the initial specifications of differential gene activity may occur in this embryo. i. The embryo has an invariant cell lineage, and the lineage founder cells can be considered as regulatory spatial domains. That is, from each of these(More)
The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five(More)