Learn More
Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the(More)
In plants, thioredoxins h are encoded by a multigenic family of genes (eight in Arabidopsis thaliana, at least five in Populus sp.). The multiplicity of these isoforms raises the question of their specificity. This review focuses on thioredoxins h in two plant models: Arabidopsis and poplar. Thioredoxins h can be divided into three different subgroups(More)
The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the(More)
Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more(More)
Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the(More)
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including(More)
Glutathione transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes and endogenous metabolism. The distribution of fungal-specific class A GSTs was investigated in saprotrophic fungi revealing a recent diversification within this class. Biochemical characterization of eight GSTFuA isoforms(More)
The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have(More)
The nature of the active site and the substrate specificity of poplar type II peroxiredoxin, an enzyme which preferentially uses glutaredoxin as an electron donor, were investigated in this study. The type II peroxiredoxin is able to use phospholipid hydroperoxide nearly as efficiently as hydrogen peroxide. Two of the hyper-conserved amino acid residues in(More)
Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the(More)