Learn More
OBJECTIVE To determine whether the functional properties of tissue-engineered constructs cultured in a chemically-defined medium supplemented briefly with TGF-beta3 can be enhanced with the application of dynamic deformational loading. METHODS Primary immature bovine cells (2-3 months old) were encapsulated in agarose hydrogel (2%, 30 x 10(6)cells/ml) and(More)
OBJECTIVE The concept of cartilage functional tissue engineering (FTE) has promoted the use of physiologic loading bioreactor systems to cultivate engineered tissues with load-bearing properties. Prior studies have demonstrated that culturing agarose constructs seeded with primary bovine chondrocytes from immature joints, and subjected to dynamic(More)
It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and(More)
Genipin is a naturally-derived biocompatible cross-linking agent commonly used to generate three dimensional tissue-engineered scaffolds or to fix biologically derived scaffolds prior to implantation. Here we propose a novel use for genipin as a long-term culture medium supplement to promote cross-linking of de novo cell products that are produced in(More)
Deformational loading represents a primary component of the chondrocyte physical environment in vivo. This review summarizes our experience with physiologic deformational loading of chondrocyte-seeded agarose hydrogels to promote development of cartilage constructs having mechanical properties matching that of the parent calf tissue, which has a Young's(More)
Few successful treatment modalities exist for surface-wide, full-thickness lesions of articular cartilage. Functional tissue engineering offers a great potential for the clinical management of such lesions. Our long-term hypothesis is that anatomically shaped tissue constructs of entire articular layers can be engineered in vitro on a bony substrate, for(More)
In this study, we report that the sequential application of physiologic deformational loading after culturing with the growth factor TGF-beta3 (for 2-3 weeks) yields significantly stiffer chondrocyte-seeded agarose constructs than cultures in which deformational loading was applied during the initial 2-3 week TGF-beta3 exposure period. Using this culture(More)
Osteoarthritis is a major cause of disability and pain for patients in the United States. Treatments for this degenerative disease represent a significant challenge considering the poor regenerative capacity of adult articular cartilage. Tissue-engineering techniques have advanced over the last two decades such that cartilage-like tissue can be cultivated(More)
Due to the prevalence of osteoarthritis (OA) and damage to articular cartilage, coupled with the poor intrinsic healing capacity of this avascular connective tissue, there is a great demand for an articular cartilage substitute. As the bearing material of diarthrodial joints, articular cartilage has remarkable functional properties that have been difficult(More)