Learn More
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory general circulation model (GClVO is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent(More)
Ž . The energy components of sixteen Soil-Vegetation Atmospheric Transfer SVAT schemes were analyzed and intercompared using 10 years of surface meteorological and radiative forcing data from the Red-Arkansas River basin in the Southern Great Plains of the United States. Comparisons of simulated surface energy fluxes among models showed that the net Ž .(More)
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational(More)
[1] The accuracy of forcing data greatly impacts the ability of land surface models (LSMs) to produce realistic simulations of land surface processes. With this in mind, the multi-institutional North American Land Data Assimilation System (NLDAS) project has produced retrospective (1996–2002) and real-time (1999–present) data sets to support its LSM(More)
HAPEX-MOBILHY data, consisting of one year of hourly atmospheric forcing data at Caumont (SAMER No. 3, 43.68°N, 0.1°W) were used repeatedly to run the two-layer Variable Infiltration Capacity (VIC-2L) land-surface scheme until the model reached equilibrium in its water and energy balance. The equilibrium results are compared with one year of weekly soil(More)
Drought is expected to increase in frequency and severity in the future as a result of climate change, mainly as a consequence of decreases in regional precipitation but also because of increasing evaporation driven by global warming. Previous assessments of historic changes in drought over the late twentieth and early twenty-first centuries indicate that(More)
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL(More)
a Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium b Centre d'Etudes Spatiales de la Biosphère, Toulouse, France c Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA d European Space Agency, Noordwijk, The Netherlands e Department of Civil Engineering, Monash University, Victoria,(More)
An Ensemble Kalman filter (EnKF) is used to assimilate airborne measurements of 1.4 GHz surface brightness temperature ðTBÞ acquired during the 1997 Southern Great Plains Hydrology Experiment (SGP97) into the TOPMODEL-based Land–Atmosphere Transfer Scheme (TOPLATS). In this way, the potential of using EnKF-assimilated remote measurements of TB to compensate(More)
Using a high-resolution hydrologic model, a land surface microwave emission model (LSMEM), and an explicit simulation of the orbital and scanning characteristics for the advanced microwave sensing radiometer (AMSR-E), an observing system simulation experiment (OSSE) is carried out to assess the impact of land surface heterogeneity on large-scale retrieval(More)