Learn More
The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range (0.41 to 15 µm). These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available(More)
Daily distribution of the aerosol optical thickness and columnar mass concentration will be derived over the continents, from the EOS moderate resolution imaging spectroradiometer (MODIS) using dark land targets. Dark land covers are mainly vegetated areas and dark soils observed in the red and blue channels; therefore the method will be limited to the(More)
Abstiuct-Remote sensing from satellite or airborne platforms of land or sea surfaces in the visible and near infrared is strongly affected by the presence of the atmosphere along the path from Sun to Target (surface) to Sensor. This paper presents 6s (Second Simulation of the Satellite Signal in the Solar Spectrum), a computer code which can accurately(More)
The first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is planned for launch by NASA in 1998. This instrument will provide a new and improved capability for terrestrial satellite remote sensing aimed at meeting the needs of global change research. The MODIS standard products will provide new and improved tools for moderate resolution(More)
The NASA moderate resolution imaging spectroradiometer (MODIS) instrument will provide a global and improved source of information for the study of land surfaces with a spatial resolution of up to 250 m. Prior to the derivation of various biophysical parameters based on surface reflectances, the top of the atmosphere signals need to be radiometrically(More)
The MODIS instrument provides major advances in moderate resolution earth observation. Improved spatial resolution for land observation at 250 and 500 m and improved spectral band placement provide new remote sensing opportunities. NASA has invested in the development of improved algorithms for MODIS, which will provide new data sets for global change(More)
— The methodology used to store a number of the Moderate Resolution Imaging Spectroradiometer (MODIS) land products is described. The approach has several scientific and data processing advantages over conventional approaches used to store remotely sensed data sets and may be applied to any remote-sensing data set in which the observations are geolo-cated(More)
A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed(More)