Eric E. Swayze

Learn More
Dramatic advances in understanding of the roles RNA plays in normal health and disease have greatly expanded over the past 10 years and have made it clear that scientists are only beginning to comprehend the biology of RNAs. It is likely that RNA will become an increasingly important target for therapeutic intervention; therefore, it is important to develop(More)
We have identified a small interfering RNA (siRNA) motif, consisting entirely of 2'-O-methyl and 2'-fluoro nucleotides, that displays enhanced plasma stability and increased in vitro potency. At one site, this motif showed remarkable >500-fold improvement in potency over the unmodified siRNA. This marks the first report of such a potent fully modified(More)
A systematic study on the effect of 2'-sugar modifications (2'-F (2'-F-2'-deoxy-nucleoside residues), 2'-O-Me (2'-O-methyl-nucleoside residues), and 2'-O-MOE [2'-O-(2-methoxyethyl)]-nucleoside residues) in the antisense and sense strands of short interference RNA (siRNA) was performed in HeLa cells. The study of the antisense strand of siRNAs demonstrated(More)
Chemically modified antisense oligonucleotides (ASOs) are widely used as a tool to functionalize microRNAs (miRNAs). Reduction of miRNA level after ASO inhibition is commonly reported to show efficacy. Whether this is the most relevant endpoint for measuring miRNA inhibition has not been adequately addressed in the field although it has important(More)
Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the(More)
A series of 2-piperidin-4-yl-benzimidazoles were synthesized and evaluated for antibacterial activities. Certain compounds inhibit bacterial growth with low micromolar minimal inhibitory concentration (MIC). These benzimidazoles are effective against both Gram-positive and Gram-negative bacteria of clinical importance, particularly enterococci, and(More)
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized(More)
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense(More)
The potency of second generation antisense oligonucleotides (ASOs) in animals was increased 3- to 5 -fold (ED(50) approximately 2-5 mg/kg) without producing hepatotoxicity, by reducing ASO length (20-mer to 14-mer) and by employing novel nucleoside modifications that combine structural elements of 2'-O-methoxyethyl residues and locked nucleic acid. The(More)
A new class of small molecules that bind the HCV RNA IRES IIA subdomain with sub-micromolar affinity is reported. The benzimidazole 'hit' 1 with a KD approximately 100 microM to a 29-mer RNA model of Domain IIA was identified from a 180000-member library using mass spectrometry-based screening methods. Further MS-assisted SAR (structure-activity(More)