Learn More
The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of the mammalian circadian timing system. The SCN is composed of two anatomically and functionally distinct subdivisions, designated core and shell, which can be distinguished on the basis of their chemoarchitecture and connections in the rat. In the present study, we examine the(More)
The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to beta-pleated sheet aggregates of the amyloid-beta (Abeta) peptide in vitro. The in vivo retention of PiB in brains of people with Alzheimer's disease shows a regional distribution that is very similar to distribution of Abeta deposits observed(More)
During the development of in vivo amyloid imaging agents, an effort was made to use micro-positron emission tomography (PET) imaging in the presenilin-1 (PS1)/amyloid precursor protein (APP) transgenic mouse model of CNS amyloid deposition to screen new compounds and further study Pittsburgh Compound-B (PIB), a PET tracer that has been shown to be retained(More)
The suprachiasmatic nucleus (SCN) temporally organizes behavior in part by sustaining arousal during the wake period of the sleep/wake cycle to consolidate adaptive waking behavior. In this study, we demonstrate direct projections from the SCN, in both the rat and the human brains, to perikarya and proximal dendrites of two groups of posterior hypothalamic(More)
This study provides an analysis of the chemoarchitecture of the posterior hypothalamic area (PHA) and a retrograde transport analysis of inputs to the PHA in the rat. The chemoarchitectural analysis reveals that the majority of PHA neurons contain glutamate. Hypocretin, melanin concentrating hormone, tyrosine hydroxylase, neuropeptide Y and(More)
Elevations in beta-amyloid peptide (A beta) levels after traumatic brain injury (TBI) may confer risk for developing Alzheimer's disease in head trauma patients. We investigated the effects of simvastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, on hippocampal A beta burden in a clinically relevant head injury/intervention model using mice(More)
Traumatic brain injury (TBI) is a risk factor for the development of Alzheimer's disease (AD). This immunohistochemical study determined the extent of AD-related changes in temporal cortex resected from individuals treated surgically for severe TBI. Antisera generated against Abeta species (total Abeta, Abeta(1-42), and Abeta(1-40)), the C-terminal of the(More)
Apolipoprotein D (apoD) is elevated in Alzheimer's disease (AD) cortex, localizing to cells, blood vessels, and neuropil deposits (plaques). The role of apoD in AD pathology and the extent of its co-distribution with diffuse (amorphous) and compact (dense fibrillar) amyloid-beta (Abeta) plaques are currently unclear. To address this issue, we combined apoD(More)
The proinflammatory enzyme 5-lipoxygenase (5-LOX) is upregulated in Alzheimer's disease (AD), but its localization and association with the hallmark lesions of the disease, beta-amyloid (Abeta) plaques and neurofibrillary tangles (NFTs), is unknown. This study examined the distribution and cellular localization of 5-LOX in the medial temporal lobe from AD(More)
BACKGROUND Traumatic brain injury (TBI) is an environmental risk factor for developing Alzheimer disease. This may be due, in part, to changes associated with beta-amyloid (Abeta) plaque formation, which can occur within hours after injury, regardless of the patient's age. In addition to being precursors of toxic fibrils that deposit into plaques, soluble(More)