Learn More
Axon pruning is widely used for the refinement of neural circuits in both vertebrates and invertebrates, and may also contribute to the pathogenesis of neurodegenerative diseases. However, little is known about the cellular and molecular mechanisms of axon pruning. We use the stereotyped pruning of gamma neurons of the Drosophila mushroom bodies (MB) during(More)
Axon pruning by degeneration remodels exuberant axonal connections and is widely required for the development of proper circuitry in the nervous system from insects to mammals. Developmental axon degeneration morphologically resembles injury-induced Wallerian degeneration, suggesting similar underlying mechanisms. As previously reported for mice, we show(More)
Local axon degeneration is a common pathological feature of many neurodegenerative diseases and peripheral neuropathies. While it is believed to operate with an apoptosis-independent molecular program, the underlying molecular mechanisms are largely unknown. In this study, we used the degeneration of transected axons, termed "Wallerian degeneration," as a(More)
Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to(More)
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1(More)
We introduce a method based on machine vision for automatically measuring aggression and courtship in Drosophila melanogaster. The genetic and neural circuit bases of these innate social behaviors are poorly understood. High-throughput behavioral screening in this genetically tractable model organism is a potentially powerful approach, but it is currently(More)
Males of most species are more aggressive than females, but the neural mechanisms underlying this dimorphism are not clear. Here, we identify a neuron and a gene that control the higher level of aggression characteristic of Drosophila melanogaster males. Males, but not females, contain a small cluster of FruM(+) neurons that express the neuropeptide(More)
Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3'-triiodothyronine (T(3)) binding capacity in tadpole tail, and 5' deiodinase activity in tadpole tissues, increasing the generation of T(3) from thyroxine (T(4)). In the present study we investigated(More)
Social interactions, such as an aggressive encounter between two conspecific males or a mating encounter between a male and a female, typically progress from an initial appetitive or motivational phase, to a final consummatory phase. This progression involves both changes in the intensity of the animals' internal state of arousal or motivation and(More)
Basic transcription element binding protein (BTEB) is a member of the Krüppel family of zinc finger transcription factors. It has been shown that BTEB plays a role in promoting neuronal process formation during postembryonic development. In the present study, the biochemical properties, transactivation function, and the developmental and hormone-regulated(More)