Eric D. Chisolm

Learn More
We propose a means for constructing highly accurate equations of state (EOS) for elemental solids and liquids essentially from first principles, based upon a particular decomposition of the underlying condensed matter Hamiltonian for the nuclei and electrons. We also point out that at low pressures the neglect of anharmonic and electron-phonon terms, both(More)
We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the " random " class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the(More)
We calculate the logarithmic moment of the phonon frequency spectrum at a single density for 29 monatomic liquids using two methods, both suggested by Wallace's theory of liquid dynamics: The first method relies on liquid entropy data and the second on neutron scattering data in the crystal phase. This theory predicts that for a class of elements called(More)
A transit is the motion of a system from one many-particle potential energy valley to another. We report the observation of transits in molecular dynamics calculations of supercooled liquid argon and sodium. Each transit is a correlated simultaneous shift in the equilibrium positions of a small local group of particles, as revealed in the fluctuating graphs(More)
We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to calculations of the velocity autocorrelation function Z(t) and diffusion coefficient D. The model trajectory consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential valley, interspersed with(More)
  • 1