Learn More
The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including(More)
We present a signal-processing framework for light transport. We study the frequency content of radiance and how it is altered by phenomena such as shading, occlusion, and transport. This extends previous work that considered either spatial or angular dimensions, and it offers a comprehensive treatment of both space and angle.We show that occlusion, a(More)
Adjusting photographs to obtain compelling renditions requires skill and time. Even contrast and brightness adjustments are challenging because they require taking into account the image content. Photographers are also known for having different retouching preferences. As the result of this complexity, rule-based, one-size-fits-all automatic techniques(More)
Real-time programmable graphics hardware has resource constraints that prevent complex shaders from rendering in a single pass. One way to virtualize these resources is to partition shading computations into multiple passes, each of which satisfies the given constraints. Many such partitions exist for a shader, but it is important to find one that renders(More)
Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay(More)
We propose a reduced complexity wavelet-based image coding technique. Here, 64-D (for three stages of decomposition) vectors are formed by combining appropriate coefficients from the wavelet subimages, 16-D feature vectors are then extracted from the 64-D vectors on which vector quantization (VQ) is performed. At the decoder, 64-D vectors are reconstructed(More)
—High-quality-factor optical ring resonators have recently been fabricated in thin silicon-on-insulator (SOI). Practical applications of such devices will require careful tuning of the precise location of the resonance peaks. In particular, one often wants to maximize the resonance shift due to the presence of an active component and minimize the resonance(More)