Learn More
A compact pin Ge photodetector is integrated in submicron SOI rib waveguide. The detector length is reduced down to 15 microm using butt coupling configuration which is sufficient to totally absorb light at the wavelength of 1.55 microm. A -3 dB bandwidth of 42 GHz has been measured at a 4V reverse bias with a responsivity as high as 1 A/W at the wavelength(More)
We report on lateral pin germanium photodetectors selectively grown at the end of silicon waveguides. A very high optical bandwidth, estimated up to 120GHz, was evidenced in 10 µm long Ge photodetectors using three kinds of experimental set-ups. In addition, a responsivity of 0.8 A/W at 1550 nm was measured. An open eye diagrams at 40Gb/s were demonstrated(More)
We investigate the influence of the wavelength, within the 1.3μm-1.63μm range, on the second-order optical nonlinearity in silicon waveguides strained by a silicon nitride (Si₃N ₄) overlayer. The effective second-order optical susceptibility χxxy(2)¯ evolutions have been determined for 3 different waveguide widths 385 nm, 435 nm and 465 nm and it showed(More)
We report the experimental demonstration of a germanium metal-semiconductor-metal (MSM) photodetector integrated in a SOI rib waveguide. Femtosecond pulse and frequency experiments have been used to characterize those MSM Ge photodetectors. The measured bandwidth under 6V bias is about 25 GHz at 1.55 microm wavelength with a responsivity as high as 1 A/W.(More)
High normalized delay-bandwidth product (NDBP) and wideband slow light are achieved in an alternative row of ellipse-hole photonic crystal waveguide. Two different criteria of flat ratio are adopted. Under a constant group index criterion, a high NDBP of 0.446 with a group index of 42 and a bandwidth of 16.4 nm are obtained by plane wave expansion(More)
This article describes the first demonstration of ring resonators based on vertical multiple-slot silicon nitride waveguides. The design, fabrication and measurement of multiple-slot waveguide ring resonators with several coupling distances and ring radii (70 microm, 90 microm and 110 microm) have been carried out for TE and TM polarizations at the(More)
A high speed and low loss silicon optical modulator based on carrier depletion has been made using an original structure consisting of a p-doped slit embedded in the intrinsic region of a lateral pin diode. This design allows a good overlap between the optical mode and carrier density variations. Insertion loss of 5 dB has been measured with a contrast(More)
A first experimental demonstration of a planar superprism in silicon microphotonics technology using silicon on insulator (SOI) substrates is presented. Experimental results for anomalous wavelengthdependent angular dispersion in SOI triangular lattice planar photonic crystals are reported. An angular swing of 14 degrees is measured for light propagating(More)
High efficiency surface grating couplers for silicon nitride waveguides have been designed, fabricated, and characterized. Coupling efficiencies exceeding 60 % are reported at a wavelength of 1.31 mum, as well as angular and wavelength -3 dB tolerances of 4 degrees and 50 nm, respectively. When the wavelength is increased from 1310 nm to 1450 nm the(More)
Rib microwaveguides are demonstrated on silicon-on-insulator substrates with Si film thickness of either 380 or 200 nm and a width of 1 microm. Corner mirrors that allow compact 90 degrees turns between two perpendicular waveguides are characterized. Measured propagation losses are approximately 0.4 dB/cm and approximately 0.5 dB/cm for 380-nm and 200-nm Si(More)