Learn More
A biomechanical model is presented for the dynamic changes in deoxyhemoglobin content during brain activation. The model incorporates the conflicting effects of dynamic changes in both blood oxygenation and blood volume. Calculations based on the model show pronounced transients in the deoxyhemoglobin content and the blood oxygenation level dependent (BOLD)(More)
Image processing strategies for functional magnetic resonance imaging (FMRI) data sets acquired using a gradient-recalled echo-planar imaging sequence are considered. The analysis is carried out using the mathematics of vector spaces. Data sets consisting of N sequential images of the same slice of brain tissue are analyzed in the time-domain and also,(More)
We investigated the cortical mechanisms of visual-spatial attention while subjects discriminated patterned targets within distractor arrays. Functional magnetic resonance imaging (fMRI) was used to map the boundaries of retinotopic visual areas and to localize attention-related changes in neural activity within several of those areas, including primary(More)
In the pulsed arterial spin labeling (ASL) techniques EPISTAR, PICORE, and FAIR, subtraction of two images in which inflowing blood is first tagged and then not tagged yields a qualitative map of perfusion. An important reason this map is not quantitative is that there is a spatially varying delay in the transit of blood from the tagging region to the(More)
We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error(More)
The blood-oxygen-level-dependent (BOLD) signal measured in the brain with functional magnetic resonance imaging (fMRI) during an activation experiment often exhibits pronounced transients at the beginning and end of the stimulus. Such transients could be a reflection of transients in the underlying neural activity, or they could result from transients in(More)
Using gradient-echo echo-planar MRI, a local signal increase of 4.3 +/- 0.3% is observed in the human brain during task activation, suggesting a local decrease in blood deoxyhemoglobin concentration and an increase in blood oxygenation. Images highlighting areas of signal enhancement temporally correlated to the task are created.
The effects of sleep deprivation on the neural substrates of cognition are poorly understood. Here we used functional magnetic resonance imaging to measure the effects of 35 hours of sleep deprivation on cerebral activation during verbal learning in normal young volunteers. On the basis of a previous hypothesis, we predicted that the prefrontal cortex (PFC)(More)
Quantitative imaging of perfusion using a single subtraction, second version (QUIPSS II) is a pulsed arterial spin labeling (ASL) technique for improving the quantitation of perfusion imaging by minimizing two major systematic errors: the variable transit delay from the distal edge of the tagged region to the imaging slices, and the contamination by(More)
Experimental designs for event-related functional magnetic resonance imaging can be characterized by both their detection power, a measure of the ability to detect an activation, and their estimation efficiency, a measure of the ability to estimate the shape of the hemodynamic response. Randomized designs offer maximum estimation efficiency but poor(More)