Eric C Schreiber

Learn More
Accurate simulation of large electron fields may lead to improved accuracy in Monte Carlo treatment planning while simplifying the commissioning procedure. We have used measurements made with wide-open jaws and no electron applicator to adjust simulation parameters. Central axis depth dose curves and profiles of 6-21 MeV electron beams measured in this(More)
Adjustments made to Monte Carlo models during the commissioning of the simulation should be physically realistic and correspond to actual machine characteristics. Large electron fields, with the jaws fully open and the applicator removed, are sensitive to important source and geometry parameters and may provide the most accurate beam models, including those(More)
The therapeutic activity of antibiotics depends on several factors including absorption, elimination kinetics, distribution in the body, minimal inhibitory concentrations (MIC), stability against enzymes, and plasma-protein binding. Some of these factors are interrelated, for example, the extent of protein binding of an antibiotic influences its elimination(More)
The absorption, distribution and metabolic fate of triamcinolone acetonide-14C-21-phosphate were studied in the dog, monkey, and rat. A comparison of levels of radioactivity in blood or plasma, reached after intramuscular or intravenous administration, indicated that the drug was completely absorbed from the site of intramuscular injection within 10-15 min(More)
Micro-radiotherapy (micro-RT) system is specially designed for small animal (cancer cell) irradiation for basic and translational cancer research. We use carbon nanotube (CNT) field emission technology to develop a novel micro-RT system for image-guided high precision irradiation that is similar to the state of the art radiotherapy which our cancer patients(More)
A novel single cell irradiation system using carbon nanotube (CNT) based field emission technology is proposed. The system can produce electron microbeam at a large range of pulsation frequencies and dose rates with energy between 20 and 60 keV. Different from any existing single beam microbeam device, the CNT-based system can have 10,000 microbeam pixels,(More)
PURPOSE Training in clinical dosimetry is an important component of radiation therapy, dosimetry, and medical physics training programs. Based on our in-house treatment planning system, PLanUNC, we are developing and assessing a web-based dosimetry teaching tool to augment existing training programs. METHODS We surveyed radiation therapy program directors(More)