Learn More
PURPOSE We develop a realistic and flexible 4-D digital mouse phantom and investigate its usefulness in molecular imaging research. METHODS Organ shapes were modeled with non-uniform rational B-spline (NURBS) surfaces based on high-resolution 3-D magnetic resonance microscopy (MRM) data. Cardiac and respiratory motions were modeled based on gated magnetic(More)
Effects of different scatter compensation methods incorporated in fully 3D iterative reconstruction are investigated. The methods are: (i) the inclusion of an 'ideal scatter estimate' (ISE); (ii) like (i) but with a noiseless scatter estimate (ISE-NF); (iii) incorporation of scatter in the point spread function during iterative reconstruction ('ideal(More)
In this work, we present a method for approximating constrained maximum entropy (ME) reconstructions of SPECT data with modifications to a block-iterative maximum a posteriori (MAP) algorithm. Maximum likelihood (ML)-based reconstruction algorithms require some form of noise smoothing. Constrained ME provides a more formal method of noise smoothing without(More)
Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has(More)
The purpose of this study was to investigate the importance of 2D versus 3D compensation methods in SPECT. The compensation methods included in the study addressed two important degrading factors, namely attenuating and collimator-detector response in SPET. They can be divided into two general categories. The conventional methods are based on the filtered(More)
The authors develop a unique CT simulation tool based on the 4D extended cardiac-torso (XCAT) phantom, a whole-body computer model of the human anatomy and physiology based on NURBS surfaces. Unlike current phantoms in CT based on simple mathematical primitives, the 4D XCAT provides an accurate representation of the complex human anatomy and has the(More)
In this paper, we apply the channelized Hotelling observer (CHO) using a defect detection task to the optimization and evaluation of three-dimensional iterative reconstruction-based compensation methods for myocardial perfusion single-photon emission computed tomography (SPECT). We used a population of 24 mathematical cardiac-torso phantoms that(More)
UNLABELLED Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform(More)
Converging beam collimator geometries offer improved tradeoffs between resolution and noise for single photon emission computed tomography (SPECT). The major factor limiting the resolution in SPECT is the collimator-detector response blurring. In order to compensate for this blurring it is useful to be able to calculate the collimator response function. A(More)
Estimating the residence times in tumor and normal organs is an essential part of treatment planning for radioimmunotherapy (RIT). This estimation is usually done using a conjugate view whole body scan time series and planar processing. This method has logistical and cost advantages compared to 3-D imaging methods such as Single photon emission computed(More)