Eric Breckenfeld

Learn More
Next-generation devices will rely on exotic functional properties not found in traditional systems. One class of materials of particular interest for applications are those possessing metal-to-insulator transitions (MITs). In this work, we probe the relationship between variations in the growth process, subsequent variations in cation stoichiometry, and the(More)
The combination of epitaxial strain and defect engineering facilitates the tuning of the transition temperature of BaTiO3 to >800 °C. Advances in thin-film deposition enable the utilization of both the electric and elastic dipoles of defects to extend the epitaxial strain to new levels, inducing unprecedented functionality and temperature stability in(More)
Sr2Ti7O14, a new phase, is synthesized by leveraging the innate chemical and thermo-dynamic instabilities in the SrTiO3-TiO2 system and non-equilibrium growth techniques. The chemical composition, epitaxial relationships, and orientation play roles in the formation of this novel layered phase, which, in turn, possesses unusual charge ordering,(More)
We are developing a novel computer simulation game based on authentic engineering practices to give first-year engineering undergraduates a more complete and accurate understanding of the engineering profession. The game is student-focused in that it is tailored to the newest generation of engineering students who are more computer literate, electronically(More)
VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily(More)
Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive(More)
We demonstrate a link between the growth process, the stoichiometry of LaAlO(3), and the interfacial electrical properties of LaAlO(3)/SrTiO(3) heterointerfaces. Varying the relative La:Al cation stoichiometry by a few atomic percent in films grown at 1×10(-3) Torr results in a 2 and 7 order-of-magnitude change in the 300 and 2 K sheet resistance,(More)
Epitaxial VO2/TiO2 thin film heterostructures were grown on (100) (m-cut) Al2O3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO2 buffer layer. A combination of electrical transport and X-ray(More)
We report intense, narrow line-width, surface chemisorption-activated and reversible ultraviolet (UV) photoluminescence from radiative recombination of the two-dimensional electron gas (2DEG) with photoexcited holes at LaAlO3/SrTiO3. The switchable luminescence arises from an electron transfer-driven modification of the electronic structure via(More)
  • 1