Learn More
Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus(More)
Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped(More)
Glia are the most abundant cell type in the mammalian brain. They regulate neuronal development and function, CNS immune surveillance, and stem cell biology, yet we know surprisingly little about glia in any organism. Here we identify over 40 new Drosophila glial genes. We use glial cells missing (gcm) mutants and misexpression to verify they are Gcm(More)
Despite the power of massively parallel sequencing platforms, a drawback is the short length of the sequence reads produced. We demonstrate that short reads can be locally assembled into longer contigs using paired-end sequencing of restriction-site associated DNA (RAD-PE) fragments. We use this RAD-PE contig approach to identify single nucleotide(More)
BACKGROUND Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels.(More)
We constructed a restriction site associated DNA (RAD) marker microarray to facilitate rapid genetic mapping of zebrafish mutations. Using these microarrays with a bulk segregant approach, we localized previously unmapped mutations to genomic regions just a few centiMorgans in length. Furthermore, we developed an approach to assay individual RAD markers in(More)
The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help(More)
Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1(More)
Restriction endonucleases are highly specific in recognizing the particular DNA sequence they act on. However, their activity is affected by sequence context, enzyme concentration and buffer composition. Changes in these factors may lead to either ineffective cleavage at the cognate restriction site or relaxed specificity allowing cleavage of degenerate(More)
Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics.(More)