Eri Ohta

Learn More
Caspase plays an important role in apoptosis and physiological processes such as synaptic plasticity. However, the caspase substrate at the synapse is still unknown. Here we used an in vitro cleavage assay with a small-pool human brain cDNA library. We identified the presynaptic protein Caytaxin as a substrate of caspase-3 and caspase-7. Deficiency in(More)
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. We examined the effects of acute and chronic treatment with haloperidol on parkin mRNA expression in the rat brain by reverse transcription-polymerase chain reaction. Acute haloperidol treatment (2 mg/kg) increased parkin mRNA levels in the striatum and nucleus accumbens but not(More)
Prune homolog 2 (Drosophila) (PRUNE2) encodes a BCH motif-containing protein that shares homology with the Cayman ataxia-related protein Caytaxin. Caytaxin is a substrate of caspase-3 and is specifically expressed at the presynapse of vesicular-type glutamate transporter (VGLUT)-positive neurons, where it plays a role in glutamate neurotransmission(More)
A family of Bcl-2/adenovirus E1B 19kDa-interacting proteins (BNIPs) plays critical roles in several cellular processes such as cellular transformation, apoptosis, neuronal differentiation, and synaptic function, which are mediated by the BNIP2 and Cdc42GAP homology (BCH) domain. Prune homolog 2 (Drosophila) (PRUNE2) and its isoforms -C9orf65, BCH(More)
We previously reported that haloperidol, a dopamine-D(2) receptor antagonist, induced striatal expression of parkin gene, which mutations cause autosomal recessive juvenile parkinsonism. Because of an involvement of the parkin gene defect in selective degeneration of dopaminergic neurons, we herein examined the effect of the neurotoxic dose of(More)
  • 1