Learn More
A macrophage culture model was used to investigate the erosion of gamma irradiated poly(trimethylene carbonate) (PTMC) films. When the PTMC films were incubated in the culture medium, but physically separated from the cells by a membrane, no erosion occurred. In contrast, when the J774A macrophages were directly cultured on PTMC films, they adhered to the(More)
High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose on the cytotoxicity, surface properties, degradation(More)
The in vivo erosion behavior of crosslinked (co)polymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) was investigated. High molecular weight poly(trimethylene carbonate) (PTMC) homopolymer- and copolymer films were crosslinked by gamma irradiation. To adjust the in vivo erosion rate of the (co)polymer films, both the irradiation dose (25,(More)
A practical method of photocrosslinking high molecular weight poly(trimethylene carbonate)(PTMC) is presented. Flexible, elastomeric and biodegradable networks could be readily prepared by UV irradiating PTMC films containing pentaerythritol triacrylate (PETA) and a photoinitiator. The network characteristics, mechanical properties, wettability, and in(More)
Resorbable and elastomeric poly(trimethylene carbonate) (PTMC) networks were efficiently prepared by photoinitiated crosslinking of linear high-molecular-weight PTMC. To crosslink PTMC films, low-molecular-weight PTMC macromers with methacrylate end groups were synthesized and used as crosslinking aids. By exposing PTMC films containing only photoinitiator(More)
Biodegradable elastomeric poly(trimethylene carbonate) (PTMC) networks were efficiently formed by gamma irradiating the linear polymer in the presence of pentaerythritol triacrylate (PETA). The properties of networks formed upon irradiation of PTMC films containing (0, 1, 5 wt %) PETA as a cross-linking aid were evaluated. The gel contents and network(More)
Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After implantation in the body, biomedical devices may be(More)
Form-stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)- and ε-caprolactone (CL)-based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and(More)
High-molecular-weight (co)polymers of trimethylene carbonate and D,L-lactide are efficiently crosslinked using PETA during gamma irradiation. Form-stable networks with gel contents of 86 ± 5 to 96 ± 1 are obtained from non-crystalline (co)polymers. Glass transition temperatures and elastic moduli of the networks can be varied by adjusting the copolymer(More)
  • 1