Learn More
Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale(More)
We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue(More)
We hypothesized that low concentrations of H2O2 could be generated through the electrochemical conversion of oxygen by applying an electric potential to a conductive scaffold and produce a low, but constant, concentration of H2O2 that would be sufficient to destroy biofilms. To test our hypothesis we used a multidrug-resistant Acinetobacter baumannii(More)
The goal of this work was to develop a microbiosensor to measure acetate concentration profiles inside biofilms in situ. The working principle of the microbiosensor was based on the correlation between the acetate concentration and the current generated during acetate oxidation by Geobacter sulfurreducens. The microbiosensor consisted of a 30-µm carbon(More)
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between(More)
Hyperosmotic agents such as maltodextrin negatively impact bacterial growth through osmotic stress without contributing to drug resistance. We hypothesized that a combination of maltodextrin (osmotic agent) and vancomycin (antibiotic) would be more effective against Staphylococcus aureus biofilms than either alone. To test our hypothesis, S. aureus was(More)
A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and(More)
Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen(More)
Productivity is a major determinant of ecosystem diversity. Microbial ecosystems are the most diverse on the planet yet very few relationships between diversity and productivity have been reported as compared with macro-ecological studies. Here we evaluated the spatial relationships of productivity and microbiome diversity in a laboratory-cultivated(More)
In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of(More)
  • 1