Erchin Serpedin

Learn More
Recently, a few efficient timing synchronization protocols for wireless sensor networks (WSNs) have been proposed with the goal of maximizing the accuracy and minimizing the power utilization. This paper proposes novel clock skew estimators assuming different delay environments to achieve energy-efficient networkwide synchronization for WSNs. The proposed(More)
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models(More)
Clock synchronization is a critical component in the operation of wireless sensor networks (WSNs), as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and coordinated sleep wake-up node scheduling mechanisms. Early studies on clock(More)
This paper introduces a family of blind feedforward nonlinear least-squares (NLS) estimators for joint estimation of the carrier phase and frequency offset of general quadrature amplitude modulated (QAM) transmissions. As an extension of the Viterbi and Viterbi (V&V) estimator, a constellation-dependent optimal matched nonlinear estimator is derived such(More)
This letter proposes an energy-efficient clock synchronization scheme for Wireless Sensor Networks (WSNs) based on a novel time synchronization approach. Within the proposed synchronization approach, a subset of sensor nodes are synchronized by overhearing the timing message exchanges of a pair of sensor nodes. Therefore, a group of sensor nodes can be(More)
With the help of recent technological advances in micro-electro-mechanical systems (MEMS) and wireless communications, low-cost, low-power, and multifunctional wireless sensing devices have been developed. When these devices are deployed over a wide geographical region, they can collect information about the environment and efficiently collaborate to(More)
This paper considers the problem of blind symbol rate estimation of signals linearly modulated by a sequence of unknown symbols. Oversampling the received signal generates cyclostationary statistics that are exploited to devise symbol-rate estimators by maximizing in the cyclic domain a (possibly weighted) sum of modulus squares of cyclic correlation(More)
Truncated Volterra expansions model nonlinear systems encountered with satellite communications, magnetic recording channels, and physiological processes. A general approach for blind deconvolution of single-input multiple-output Volterra finite impulse response (FIR) systems is presented. It is shown that such nonlinear systems can be blindly equalized(More)
Like other orthogonal frequency division multiplexing (OFDM) systems, OFDM systems based on offset quadrature amplitude modulation (OFDM/OQAM) are very sensitive to carrier frequency offset. In this paper, a new blind carrier frequency offset estimator is developed for OFDM/OQAM systems by exploiting the noncircularity of the received OFDM/OQAM signal.(More)
Cooperative communication systems have attracted much attention recently due to their desirable performance gain while using single antenna terminals. This paper addresses the joint timing and channel estimation problem, and furthermore the resynchronization of multiple timing offsets in a cooperative relay system. The estimations of timing and channel are(More)