Learn More
Culture-independent molecular techniques are now available to study microbial ecosystems. They are opening interesting perspectives to problems related to composition and population dynamics of microbial communities in various environmental niches (e.g., soil, water) and foods. In fermented food products, estimates of true microbial diversity is often(More)
In order to identify and quantify the microorganisms present in a certain ecosystem, it has become necessary to develop molecular methods avoiding cultivation, which allows to characterize only the countable part of the microorganisms in the sample, therefore losing the information related to the microbial component which presents a vitality condition,(More)
Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site(More)
AIMS Forty strains of Streptococcus thermophilus isolated from dairy products were identified and typed by a polyphasic approach which included phenotypic and genotypic criteria. METHODS AND RESULTS Strains were identified by sugar fermentation pattern and species-specific PCR. Phenotypic diversity was evaluated by a chemometric model taking into account(More)
AIMS The ability of probiotic micro-organisms to adhere to the intestinal surface is regarded as a substantial advantage in terms of bacteria persistence in the gastrointestinal tract. The aim of the present study was the development of a method based on fluorescent staining of bacteria and subsequent spectrofluorimetric detection to quantify the adhesion(More)
Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot(More)
AIMS The aim of this work was to obtain a deeper insight into the knowledge of microbial composition of Parmigiano Reggiano natural whey starters through different culture-independent methods. METHODS AND RESULTS Eighteen different Parmigiano Reggiano natural whey starters sampled from three different provinces of this cheese production area and the(More)
Streptococcus thermophilus is a lactic acid bacteria (LAB) widely used in milk fermentation processes as a starter culture. In this work the genetic diversity of S. thermophilus isolates from different sources was analyzed using Amplified Fragment Length Polymorphism fingerprinting (AFLP). Since this is the first report that indicates the application of(More)
The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses.(More)
Lactobacillus helveticus CNRZ 32 is recognized for its ability to decrease bitterness and accelerate flavor development in cheese, and has also been shown to release bioactive peptides in milk. Similar capabilities have been documented in other strains of Lb. helveticus, but the ability of different strains to affect these characteristics can vary widely.(More)