Learn More
Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set(More)
Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges(More)
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are(More)
The behavior of white and red blood cells, platelets, and circulating injected particles is one of the most studied areas of physiology. Most methods used to analyze the circulatory patterns of cells are time consuming. We describe a system named CellTrack, designed for fully automated tracking of circulating cells and micro-particles and retrieval of their(More)
Cells remove proteins by two processes: degradation and dilution due to cell growth. The balance between these basic processes is poorly understood. We addressed this by developing an accurate and noninvasive method for measuring protein half-lives, called "bleach-chase," that is applicable to fluorescently tagged proteins. Assaying 100 proteins in living(More)
Central carbon metabolism uses a complex series of enzymatic steps to convert sugars into metabolic precursors. These precursors are then used to generate the entire biomass of the cell. Are there simplifying principles that can explain the structure of such metabolic networks? Here we address this question by studying central carbon metabolism in E. coli.(More)
The inappropriate use of antibiotics has severe global health and economic consequences, including the emergence of antibiotic-resistant bacteria. A major driver of antibiotic misuse is the inability to accurately distinguish between bacterial and viral infections based on currently available diagnostic solutions. A multifaceted 'omics' approach that(More)
Understanding the dynamic relationship between components of a system or pathway at the individual cell level is a current challenge. To address this, we developed an approach that allows simultaneous tracking of several endogenous proteins of choice within individual living human cells. The approach is based on fluorescent tagging of proteins at their(More)
Regulation of proteins across the cell cycle is a basic process in cell biology. It has been difficult to study this globally in human cells due to lack of methods to accurately follow protein levels and localizations over time. Estimates based on global mRNA measurements suggest that only a few percent of human genes have cell-cycle dependent mRNA levels.(More)
Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic(More)