Epifanio Gaona-Ramírez

Learn More
Transactional Memory is currently being advocated as a promising alternative to lock-based synchronization because it simplifies multithreaded programming. In this way, future many-core CMP architectures may need to provide hardware support for transactional memory. On the other hand, power dissipation constitutes a first class consideration in multicore(More)
In the search for new paradigms to simplify multithreaded programming, Transactional Memory (TM) is currently being advocated as a promising alternative to deadlock-prone lock-based synchronization. In this way, future many-core CMP architectures may need to provide hardware support for TM. On the other hand, power dissipation constitutes a first class(More)
In the search for new paradigms to simplify multithreaded programming, Transactional Memory (TM) is currently being advocated as a promising alternative to deadlock-prone lock-based synchronization. In this way, future many-core CMP architectures may need to provide hardware support for TM. On the other hand, power dissipation constitutes a first class(More)
Transactional memory (TM) is a compelling alternative to simplify multithreaded programming that traditionally relies on error-prone lock-based synchronization for implementing cooperative tasks. Lazy-Lazy hardware TM is one of the most efficient schemes in today’s hardware TM systems. Nonetheless, the commit protocol in these systems has severe impact on(More)
  • 1