Epaminondas Rosa

Learn More
We present a novel modeling approach for reconstruction of the global behavior of coupled chaotic systems from bivariate time series. We analyze two coupled chaotic oscillators, which are able to phase synchronize due to coupling. It is shown that our technique enables the recovery of the synchronization diagram from only three data sets. In particular,(More)
We show experimental and numerical results of phase synchronization between the chaotic Chua circuit and a small sinusoidal perturbation. Experimental real-time phase synchronized states can be detected with oscilloscope visualization of the attractor, using specific sampling rates. Arnold tongues demonstrate robust phase synchronized states for(More)
We explore a properly interconnected set of Kuramoto type oscillators that results in a new associative-memory network configuration, which includes second- and third-order additional terms in the Fourier expansion of the network's coupling. Investigation of the response of the network to different external stimuli indicates an increase in the network(More)
We study the role of the strength of subthreshold currents in a four-dimensional Hodgkin-Huxley-type model of mammalian cold receptors. Since a total diminution of subthreshold activity corresponds to a decomposition of the model into a slow, subthreshold, and a fast, spiking subsystem, we first elucidate their respective dynamics separately and draw(More)
Central pattern generators are neuron networks that produce vital rhythmic motor outputs such as those observed in mastication, walking and breathing. Their activity patterns depend on the tuning of their intrinsic ionic conductances, their synaptic interconnectivity and entrainment by extrinsic neurons. The influence of two commonly found synaptic(More)
Long-range communication in the nervous system is usually carried out with the propagation of action potentials along the axon of nerve cells. While typically thought of as being unidirectional, it is not uncommon for axonal propagation of action potentials to happen in both directions. This is the case because action potentials can be initiated at multiple(More)