Enzo M. Di Fabrizio

Learn More
The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a(More)
During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small(More)
During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the axon's final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known about the force they exert. In this study, we used optical tweezers to measure the force exerted by(More)
In utero electroporation is a powerful tool to transfect and manipulate neural-precursor cells of the rodent parietal cortex and their progeny in vivo. Although this technique can potentially target numerous brain areas, reliability of transfection in some brain regions is low or physical access is limited. Here we present a new in utero electroporation(More)
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications,(More)
Noble metal nanowaveguides supporting plasmon polariton modes are able to localize the optical fields at nanometer level for high sensitivity biochemical sensing devices. Here we report on the design and fabrication of a novel photonic-plasmonic device which demonstrates label-free detection capabilities on single inorganic nanoparticles and on monolayers(More)
The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR)(More)
Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses.
The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites(More)
We demonstrate that a combination of carbon nanotubes with metamaterial offers a new paradigm for the development of a media with exceptionally strong ultrafast near-infrared nonlinear optical response which can be controlled by metamaterial design.