Enrique Solano

Learn More
The study was aimed to assess Cu, Cr, Fe, Mn and Ni levels in human scalp hair from a broad population group treated with orthodontic appliances (n=70) to determine, whether the concentration of a given metal was significantly influenced by the orthodontic treatment in comparison to control group (n=56). Levels of metal compounds were determined by atomic(More)
The Dirac equation successfully merges quantum mechanics with special relativity. It provides a natural description of the electron spin, predicts the existence of antimatter and is able to reproduce accurately the spectrum of the hydrogen atom. The realm of the Dirac equation-relativistic quantum mechanics-is considered to be the natural transition to(More)
We report on quantum simulations of relativistic scattering dynamics using trapped ions. The simulated state of a scattering particle is encoded in both the electronic and vibrational state of an ion, representing the discrete and continuous components of relativistic wave functions. Multiple laser fields and an auxiliary ion simulate the dynamics generated(More)
One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital(More)
We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the(More)
We experimentally demonstrate a quantum walk on a line in phase space using one and two trapped ions. A walk with up to 23 steps is realized by subjecting an ion to state-dependent displacement operations interleaved with quantum coin tossing operations. To analyze the ion's motional state after each step we apply a technique that directly maps the(More)
We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω≳1). In this case, the rotating-wave approximation cannot be applied or treated(More)
We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a(More)
Superconducting qubits 1,2 behave as artificial two-level atoms and are used to investigate fundamental quantum phenomena. In this context, the study of multi-photon excita-tions 3,4,5,6,7 occupies a central role. Moreover, coupling superconducting qubits to on-chip microwave resonators has given rise to the field of circuit QED , circuit QED offers the(More)
We consider the deterministic generation of entangled multiqubit states by the sequential coupling of an ancillary system to initially uncorrelated qubits. We characterize all achievable states in terms of classes of matrix-product states and give a recipe for the generation on demand of any multiqubit state. The proposed methods are suitable for any(More)