Enrique Onieva

Learn More
This paper presents our approach to TORCS Car Racing Competition 2009, it is based on a complete modular architecture capable of driving automatically a car along a track with or without oppents. The architecture is composed of five simple modules being each one responsible for a basic aspect of car driving. The modules control gear shiftings, steer(More)
In this paper, we overview the 2009 Simulated Car Racing Championship-an event comprising three competitions held in association with the 2009 IEEE Congress on Evolutionary Computation (CEC), the 2009 ACM Genetic and Evolutionary Computation Conference (GECCO), and the 2009 IEEE Symposium on Computational Intelligence and Games (CIG). First, we describe the(More)
Vehicles equipped with intelligent systems designed to prevent accidents, such as collision warning systems (CWSs) or lane-keeping assistance (LKA), are now on the market. The next step in reducing road accidents is to coordinate such vehicles in advance not only to avoid collisions but to improve traffic flow as well. To this end, vehicle-to-infrastructure(More)
This work presents a driving system designed for virtual racing situations. It is based on a complete modular architecture capable of automatically driving a car along a track with or without opponents. The architecture is composed of intuitive modules, with each one being responsible for a basic aspect of car driving. Moreover, this modularity of the(More)
Artificial intelligence techniques applied to control processes are particularly useful when the elements to be controlled are complex and can not be described by a linear model. A trade-off between performance and complexity is the main factor in the design of this kind of system. The use of fuzzy logic is specially indicated when trying to emulate such(More)
0957-4174/$ see front matter 2012 Elsevier Ltd. A doi:10.1016/j.eswa.2012.02.054 ⇑ Corresponding author. E-mail address: vicente.milanes@csic.es (V. Milané To decrease traffic accidents is a declared target of Intelligent Transportation Systems (ITS). Among them, rear-end collisions are one of the most common and constitute one of the as yet unsolved topics(More)
In car racing, blocking refers to maneuvers that can prevent, disturb or possibly block an overtaking action by an incoming car. In this paper, we present an advanced overtaking behavior that is able to deal with opponents implementing advanced blocking strategies. The behavior we developed has been integrated in an existing fuzzy-based architecture for(More)
A major research topic in intelligent transportation systems (ITSs) is the development of systems that will be capable of controlling the flow of vehicular traffic through crossroads, particularly in urban environments. This could significantly reduce traffic jams, since autonomous vehicles would be capable of calculating the optimal speed to maximize the(More)
−Reducing the number of traffic accidents is a declared target of most governments. Since dependence on driver reaction is the main cause of road accidents, it would be advisable to replace the human factor in some driving-related tasks with automated solutions. In order to automate a vehicle it is necessary to control the actuators of a car, i.e., the(More)
Research on intelligent transport systems (ITSs) is steadily leading to safer and more comfortable control for vehicles. Systems that permit longitudinal control have already been implemented in commercial vehicles, acting on throttle and brake. Nevertheless, lateral control applications are less common in the market. Since a too-sudden turn of the steering(More)