#### Filter Results:

- Full text PDF available (7)

#### Publication Year

2005

2016

- This year (0)
- Last 5 years (5)
- Last 10 years (8)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Enrique Machuca, Lawrence Mandow
- Expert Syst. Appl.
- 2012

- Enrique Machuca, Lawrence Mandow, José-Luis Pérez-de-la-Cruz, Amparo Ruiz-Sepúlveda
- European Journal of Operational Research
- 2012

This appendix analyzes those cases where the time performance of heuristic NAMOA* and TC was found to be worse than that of blind NAMOA* (sections 4.2.1 and 6.2 ). This behavior was first reported in Machuca et al. (2009) for the case of ρ = 0 and class I problems. This work also pointed out as a possible cause that better informed heuristics lead the… (More)

This paper compares empirically the performance in time and space of two multiobjective graph search algorithms, MOA* and NAMOA*. Previous theoretical work has shown that NAMOA* is never worse than MOA*. Now, a statistical analysis is presented on the relative performance of both algorithms in space and time over sets of randomly generated problems.

This paper describes the application of multiobjective heuristic search algorithms to the problem of hazardous material (hazmat) transportation. The selection of optimal routes inherently involves the consideration of multiple conflicting objectives. These include the minimization of risk (e.g. the exposure of the population to hazardous substances in case… (More)

- Paul Libbbrecht, Enrique Machuca, Mark Spanbroek
- 2005

When developers of two web-based environments wish to share activities, they need to negotiate the ways to do so. It may boil down to an a simple authorization,

- José-Luis Pérez-de-la-Cruz, Lawrence Mandow, Enrique Machuca
- J. Artif. Intell. Res.
- 2013

This article considers the performance of the MOA* multiobjective search algorithm with heuristic information. It is shown that in certain cases blind search can be more efficient than perfectly informed search, in terms of both node and label expansions. A class of simple graph search problems is defined for which the number of nodes grows linearly with… (More)

- Enrique Machuca
- IJCAI
- 2011

This thesis analyzes the performance of multiobjective heuristic graph search algorithms. The analysis is focused on the influence of heuristic information, correlation between objectives and solution depth.

- Enrique Machuca, Lawrence Mandow, Lucie Galand
- CAEPIA
- 2013

This work evaluates two different approaches for multicriteria graph search problems using compromise preferences. This approach focuses search on a single solution that represents a balanced tradeoff between objectives, rather than on the whole set of Pareto optimal solutions. We review the main concepts underlying compromise preferences, and two main… (More)

- Enrique Machuca, Lawrence Mandow
- J. Global Optimization
- 2016

This article considers the problem of calculating the set of all Pareto-optimal solutions in one-to-one biobjective shortest path problems with positive cost vectors. The efficiency of multiobjective best-first search algorithms can be improved with the use of consistent informed lower bounds. More precisely, the use of the ideal point as a lower bound has… (More)

- ‹
- 1
- ›