Enrique J de la Rosa

Learn More
Mouse models of retinal degeneration are useful tools to study therapeutic approaches for patients affected by hereditary retinal dystrophies. We have studied degeneration in the rd10 mice both by immunocytochemistry and TUNEL-labeling of retinal cells, and through electrophysiological recordings. The cell degeneration in the retina of rd10 mice produced(More)
A novel neural surface protein, Bravo, shows a pattern of topological restriction in the embryonic chick retinotectal system. Bravo is present on the developing optic fibers in the retina; however, retinal axons in the tectum do not display Bravo. The appearance of Bravo in vitro is modulated by environmental cues. Axons growing out from retinal explants on(More)
Programmed cell death occurs during both early and late neural development. The mechanisms for the regulation and execution of the early cell death as well as its developmental role are still not fully understood. In this work we have studied the early programmed cell death in the retinal neuroepithelium. Apoptotic cells were selectively located around the(More)
Programmed cell death is a well established key process required for proper development of the nervous system. The regulatory and executor mechanisms controlling survival/death of projection neurons, as well as of other types of differentiated neurons and glial cells, have been studied intensely during neural development. Much less attention has been paid(More)
Diverse cell-surface molecules of the nervous system play an important role in specifying cell interactions during development. Using a method designed to generate mAbs against neural surface molecules of defined molecular weight, we have previously reported on the surface protein, Bravo, found in the developing avian retinotectal system. Bravo is(More)
To better understand the role of insulin-related growth factors in neural development, we have characterized by in situ hybridization in chicken embryonic retina the patterns of gene expression for insulin, insulin-like growth factor I (IGF-I), their respective receptors and the IGF binding protein 5 (IGFBP5) from early stages (E6) until late stages(More)
Neural stem cells depend on insulin-like growth factor I (IGF-I) for differentiation. We analysed how activation and inhibition of the PI 3-kinase-Akt signalling affects the number and differentiation of mouse olfactory bulb stem cells (OBSCs). Stimulation of the pathway with insulin and/or IGF-I, led to an increase in Akt phosphorylated on residues Ser473(More)
Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the(More)
The extensive colocalization of insulin receptor (IR) and insulin-like growth factor-I receptor (IGFR) messenger RNAs during central nervous system development, together with the effects of insulin and IGF-I in neurogenesis, raises the question of how stage- and factor-specific signaling occurs. Thus, it is necessary to characterize the receptor proteins(More)
Monoclonal antibody 3CB2 recognizes an antigen expressed in discrete cell types derived from ectoderm and mesoderm. Biochemical and immunohistochemical studies indicate that the antigen recognized by the antibody is a 55 kDa cytoplasmic protein that may be an intermediate filament associated protein (IFAP). Developmental studies show that 3CB2 antigen is(More)