Enrique J. Sánchez Pozzi

Learn More
OBJECTIVE The endogenous, cholestatic metabolite estradiol 17ß-D-glucuronide (E(2)17G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect. DESIGN ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation(More)
Oxidative stress is a common feature in most hepatopathies. In recent years, evidence has accumulated that reactive oxygen species (ROS) induce a number of functional changes either deleterious or adaptive in the capability of the hepatocytes to produce bile and to secrete exogenous and endogenous compounds. This review is aimed to describe the mechanisms(More)
UNLABELLED Estradiol 17ß-D-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is(More)
In estradiol 17β-d-glucuronide (E17G)-induced cholestasis, the canalicular hepatocellular transporters bile salt export pump (Abcb11) and multidrug-resistance associated protein 2 (Abcc2) undergo endocytic internalization. cAMP stimulates the trafficking of transporter-containing vesicles to the apical membrane and is able to prevent internalization of(More)
  • 1