Enrique Hernández-Lemus

Learn More
The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of(More)
MOTIVATION The identification of risk-associated genetic variants in common diseases remains a challenge to the biomedical research community. It has been suggested that common statistical approaches that exclusively measure main effects are often unable to detect interactions between some of these variants. Detecting and interpreting interactions is a(More)
Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis(More)
Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis-in a process mediated by reactive oxygen species-for a number of tumor cells, have been argued to be the main mechanisms.(More)
Metabolic transformations have been reported as involved in neoplasms survival. This suggests a role of metabolic pathways as potential cancer pharmacological targets. Modulating tumor's energy production pathways may become a substantial research area for cancer treatment. The significant role of metabolic deregulation as inducing transcriptional(More)
A network-based approach has proven useful for the identification of novel genes associated with complex phenotypes, including human diseases. Because network-based gene prioritization algorithms are based on propagating information of known phenotype-associated genes through networks, the pathway structure of each phenotype might significantly affect the(More)
In recent times whole-genome gene expression analysis has turned out to be a highly important tool to study the coordinated function of a very large number of genes within their corresponding cellular environment, especially in relation to phenotypic diversity and disease. A wide variety of methods of quantitative analysis have been developed to cope with(More)
Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The(More)