Enrique Garcia-Valenzuela

Learn More
The death of retinal ganglion cells during glaucoma is thought to result from damage to their axons as they exit the eye through the lamina cribrosa. In this study, intraocular pressure in the rat was increased to twice the normal average by cauterizing two limbal-derived veins. To investigate whether retinal ganglion cells in the glaucomatous eye follow an(More)
Lesions to the mature mammalian central nervous system cause irreversible degeneration, in which neurons have been previously thought to be passive victims. In this study, axon-lesioned adult rat neurons are shown instead to actively degrade themselves through the process of apoptosis: a programmed type of cell death in which the cellular apparatus is(More)
PURPOSE Microglia normally exist in several layers across the retinal thickness. When retinal ganglion cells undergo apoptosis after lesion to their axons, microglial cells proliferate and promptly clear the debris. We have previously reported on the phagocytic response following optic nerve axotomy. Here, we present how microglial cells of deeper retinal(More)
Following optic nerve transection, most of the retinal ganglion cells die. Their debris is promptly cleared by phagocytic cells. It is currently not known to what extent peripherally derived macrophages contribute to this activity. Using antibodies OX42 and ED-1, phagocytic cells were labeled in the retinas of optic nerve lesioned adult rats. To distinguish(More)
Modification of the intracellular functions of mature neurons through specific gene transfer has many potential applications. Here we present a new methodology for the successful transfection of retinal ganglion cells by administration of plasmid at the cut end of the optic nerve, or at their intact axon terminals; the latter is significantly more(More)
  • 1