Enrique Fernández-Blanco

Learn More
Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method,(More)
The recognition of seizures is very important for the diagnosis of patients with epilepsy. The seizure is a process of rhythmic discharge in brain and occurs rarely and unpredictably. This behavior generates a need of an automatic detection of seizures by using the signals of long-term electroencephalographic (EEG) recordings. Due to the non-stationary(More)
INTRODUCTION From the unicellular to the more complex pluricellular organism needs to process the signals from its environment to survive. The computation science has already observed, that fact could be demonstrated remembering the artificial neural networks (ANN). This computation tool is based on the nervous system of the animals, but not only the(More)
This paper proposes a new evolutionary method for generating ANNs. In this method, a simple real-number string is used to codify both architecture and weights of the networks. Therefore, a simple GA can be used to evolve ANNs. One of the most interesting features of the technique presented here is that the networks obtained have been optimised, and they(More)