Enrique Alvarez-Lacalle

Learn More
Thoughts and ideas are multidimensional and often concurrent, yet they can be expressed surprisingly well sequentially by the translation into language. This reduction of dimensions occurs naturally but requires memory and necessitates the existence of correlations, e.g., in written text. However, correlations in word appearance decay quickly, while(More)
We develop a method to quantify the changes in heart rate dynamics during local myocardial ischemia induced by a percutaneous transluminal coronary angioplasty procedure (PTCA). The method introduces an index measuring the nonlinear content of the beat-to-beat (RR) time series by using nonlinear time series techniques such as surrogate data analysis and(More)
We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous(More)
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are(More)
Electromechanical alternans is a beat-to-beat alternation in the strength of contraction of a cardiac cell, which can be caused by an instability of calcium cycling. Using a distributed model of subcellular calcium we show that alternans occurs via an order-disorder phase transition which exhibits critical slowing down and a diverging correlation length. We(More)
Cardiac mechanoelectric feedback can play an important role in different heart pathologies. In this paper, we show that mechanoelectric models which describe both the electric propagation and the mechanic contraction of cardiac tissue naturally lead to close systems of equations with global coupling among the variables. This point is exemplified using the(More)
In this paper we use a simplified model of cardiac excitation-contraction coupling to study the effect of tissue deformation on the dynamics of alternans, i.e., alternations in the duration of the cardiac action potential, that occur at fast pacing rates and are known to be proarrhythmic. We show that small stretch-activated currents can produce large(More)
The different finger morphologies that arise at the interface separating two immiscible fluids in a rotating Hele-Shaw cell are studied numerically. The whole range of viscosity contrast is analyzed and a variety of fingering patterns systematically introduced, including the case in which the inner fluid is less viscous than the outer one. Our numerical(More)
Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping(More)
We demonstrate that wetting effects at moving contact lines have a strong impact in viscous fingering patterns. Experiments in a rotating Hele-Shaw (HS) cell, dry or prewetted, show consistent morphological differences. When the wetting fluid invades a dry region, contact angle dynamics yield a kinetic contribution to the interface pressure drop that scales(More)