Learn More
Clearance forming between rotating shafts and radial lip seals has been investigated both numerically and experimentally at various temperature conditions. Numerical models of clearance forming has been developed taking in account the effect of temperature, defining the material constituting properties according to empiric WLF function. Experiments have(More)
We report the electronic transport on n-type silicon single electron transistors (SETs) fabricated in complementary metal oxide semiconductor (CMOS) technology. The n-type metal oxide silicon SETs (n-MOSSETs) are built within a pre-industrial fully depleted silicon on insulator (FDSOI) technology with a silicon thickness down to 10 nm on 200 mm wafers. The(More)
We present three monolithic metamaterial-based THz bandpass filters, the skewed circular slot rings, meandered slots and Jerusalem cross slots, to fit in the THz gap. These THz bandpass filters are comprised of a metal-dielectric-metal (MDM) structure that supports multiple resonances of electric dipole, magnetic dipole, and standing-wave-like modes. By(More)
Dopant atoms are used to control the properties of semiconductors in most electronic devices. Recent advances such as single-ion implantation have allowed the precise positioning of single dopants in semiconductors as well as the fabrication of single-atom transistors, representing steps forward in the realization of quantum circuits. However, the(More)
In analogy to the Coulomb and the Pauli spin blockade, based on the electrostatic repulsion and the Pauli exclusion principle respectively, the concept of valley blockade in Silicon nanostructures is explored. The valley parity operator is defined. Valley blockade is determined by the parity conservation of valley composition eigenvectors in quantum(More)
Macroscopic manifestations of quantum mechanics are among the most spectacular effects of physics. In most of them, novel collective properties emerge from the quantum mechanical behaviour of their microscopic constituents. Others, like superconductivity, extend a property typical of the atomic scale to macroscopic length scale. Similarly, features of(More)
I review the advancements of atomic scale nanoelectronics towards quantum neuromorphics. First, I summarize the key properties of elementary combinations of few neurons, namely long– and short–term plasticity, spike-timing dependent plasticity (associative plasticity), quantumness and stochastic effects, and their potential computational employment. Next, I(More)
It is very important to study variability of nanodevices because the inability to produce large amounts of identical nanostructures is eventually a bottleneck for any application. In fact variability is already a major concern for CMOS circuits. In this work we report on the variability of dozens of silicon single-electron transistors (SETs). At room(More)