Learn More
MicroRNAs (miRNAs) are endogenous approximately 22-nucleotide RNAs, which suppress gene expression by selectively binding to the 3'-noncoding region of specific messenger RNAs through base-pairing. Given the diversity and abundance of miRNA targets, miRNAs appear to functionally interact with various components of many cellular networks. By analyzing the(More)
We conducted a comprehensive analysis of a manually curated human signaling network containing 1634 nodes and 5089 signaling regulatory relations by integrating cancer-associated genetically and epigenetically altered genes. We find that cancer mutated genes are enriched in positive signaling regulatory loops, whereas the cancer-associated methylated genes(More)
Cancer patients are often overtreated because of a failure to identify low-risk cancer patients. Thus far, no algorithm has been able to successfully generate cancer prognostic gene signatures with high accuracy and robustness in order to identify these patients. In this paper, we developed an algorithm that identifies prognostic markers using tumour gene(More)
Over the past few years, microRNAs (miRNAs) have emerged as a new prominent class of gene regulatory factors that negatively regulate expression of approximately one-third of the genes in animal genomes at post-transcriptional level. However, it is still unclear why some genes are regulated by miRNAs but others are not, i.e. what principles govern miRNA(More)
MicroRNAs (miRNAs) are non-coding small RNAs of approximately 22 nt that regulate the gene expression by base pairing with target mRNAs, leading to mRNA cleavage or translational repression. It is currently estimated that miRNAs account for approximately 1% of predicted genes in higher eukaryotic genomes and that up to 30% of genes might be regulated by(More)
We present a binding free energy function that consists of force field terms supplemented by solvation terms. We used this function to calibrate the solvation model along with the binding interaction terms in a self-consistent manner. The motivation for this approach was that the solute dielectric-constant dependence of calculated hydration gas-to-water(More)
BACKGROUND The architectural structure of cellular networks provides a framework for innovations as well as constraints for protein evolution. This issue has previously been studied extensively by analyzing protein interaction networks. However, it is unclear how signaling networks influence and constrain protein evolution and conversely, how protein(More)
An algorithm for locating the region in conformational space containing the global energy minimum of a polypeptide is described. Distances are used as the primary variables in the minimization of an objective function that incorporates both energetic and distance-geometric terms. The latter are obtained from geometry and energy functions, rather than(More)