Learn More
Leber's congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary(More)
The congenital retinal blindness known as Leber congenital amaurosis (LCA) can be caused by mutations in the RPE65 gene. RPE65 plays a critical role in the visual cycle that produces the photosensitive pigment rhodopsin. Recent evidence from human studies of LCA indicates that earlier rather than later intervention may be more likely to restore vision. We(More)
BACKGROUND Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Leber's congenital amaurosis. METHODS We assessed the retinal and(More)
The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Leber's congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2(More)
Long noncoding RNAs (lncRNAs) are emerging as regulators of many basic cellular pathways. Several lncRNAs are selectively expressed in the developing retina, although little is known about their functional role in this tissue. Vax2os1 is a retina-specific lncRNA whose expression is restricted to the mouse ventral retina. Here we demonstrate that(More)
OBJECTIVE The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2. DESIGN Clinical trial. PARTICIPANTS Five LCA2 patients with RPE65 gene mutations. METHODS After informed(More)
Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition,(More)
Using a bioinformatic approach, we have identified a new transcript, SLC7A8, mapping to 14q11.2, within the lysinuric protein intolerance (LPI) critical region. This gene is highly expressed in skeletal muscle, intestine, kidney, and placenta and encodes a predicted protein of 535 amino acids, homologous to the amino acid permease CD98 light chain and(More)
BACKGROUND Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated(More)
PURPOSE To evaluate the suitability of gene delivery-based approaches as potential treatment of Leber congenital amaurosis 4 (LCA4) due to AIPL1 mutations. METHODS Genomic DNA from patients was analyzed using a microarray chip and direct sequencing. A detailed clinical evaluation including fundus autofluorescence (FAF) and optical coherence tomography(More)