Enrico Giampieri

Learn More
Epigenetic remodeling is one of the major features of the aging process. We recently demonstrated that DNA methylation of ELOVL2 and FHL2 CpG islands is highly correlated with age in whole blood. Here we investigated several aspects of age-associated hypermethylation of ELOVL2 and FHL2. We showed that ELOVL2 methylation is significantly different in primary(More)
Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the(More)
Down Syndrome (DS) is characterized by a wide spectrum of clinical signs, which include segmental premature aging of central nervous and immune systems. Although it is well established that the causative defect of DS is the trisomy of chromosome 21, the molecular bases of its phenotype are still largely unknown. We used the Infinium HumanMethylation450(More)
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to(More)
Aging is characterized by a profound remodeling of the epigenetic architecture in terms of DNA methylation patterns. To date the most effective tool to study genome wide DNA methylation changes is Infinium HumanMethylation450 BeadChip (Infinium 450k). Despite the wealth of tools for Infinium 450k analysis, the identification of the most biologically(More)
We characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network ensembles, integrating gene expression profiling values and protein interaction network topology. In our case studies, network entropy, that by definition estimates the number of possible network instances satisfying the given constraints, can(More)
Methods for the integrative analysis of multi-omics data are required to draw a more complete and accurate picture of the dynamics of molecular systems. The complexity of biological systems, the technological limits, the large number of biological variables and the relatively low number of biological samples make the analysis of multi-omics datasets a(More)
Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored(More)
Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the(More)
Within systems biology there is an increasing interest in the stochastic behavior of genetic and biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous time Markov chain (CTMC). In this paper we consider the stochastic properties of a toggle switch, involving a protein(More)